skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "He, Chuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. He, Chuan (Ed.)
    Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored. 
    more » « less
  2. He, Chuan; Seyedsayamdost, Mohammed R. (Ed.)
    Siderophores produced via non-ribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. An improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic Acinetobacter baumannii that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central L-Ser tetrahedral unit via amide and ester linkages. Fimsbactin A is derived from two molecules of L-Ser, two molecules of 2,3-dihydroxybenzoic acid (DHB), and one molecule of L-Orn and is a product of the fbs biosynthetic operon. Here, we report the complete in vitro reconstitution of fimsbactin A biosynthesis in a cell-free system using purified enzymes. We demonstrate the conversion of L-Orn to N1-acetyl-N1-hydroxy-putrescine (ahPutr) via ordered action of FbsJ (decarboxylase), FbsI (flavin N-monooxygenase), and FbsK (N-acetyltransferase). We achieve conversion of L-Ser, DHB, and L-Orn to fimsbactin A using FbsIJK in combination with the NRPS modules FbsEFGH. We also demonstrate chemoenzymatic conversion of synthetic ahPutr to fimsbactin A using FbsEFGH and establish the substrate selectivity for the NRPS adenylation domains in FbsH (DHB) and FbsF (L-Ser). We assign a role for the type II thioesterase FbsM in producing the shunt metabolite 2-(2,3-dihydroxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid (DHB-oxa) via cleavage of the corresponding thioester intermediate that is tethered to NRPS peptidyl carrier domains during biosynthetic assembly. We propose a mechanism for branching NRPS-derived peptides via amide and ester linkages via the dynamic equilibration of N-DHB-Ser and O-DHB-Ser thioester intermediates via hydrolysis of DHB-oxa thioester intermediates. We also propose a genetic signature for NRPS ‘branching’ in the presence of a terminating C-T-C motif (FbsG). 
    more » « less